1、函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、(证明一个函数的单调性的方法:定义法,导数法;
3、(判断一个函数的单调性的常用方法:定义法,导数法,图象法,化归常见函数法,运用复合函数单调性规律。
4、常用复合函数单调性规律:
5、(若函数f(x),g(x)在区间D上均为增(减)函数,则函数f(x)+g(x)在区间D上仍为增(减)函数。
6、(若函数f(x)在区间D上为增(减)函数,则函数-f(x)在区间D上为减(增)函数。
7、(复合函数f[g(x)]的单调性的判断分两步:Ⅰ考虑函数f[g(x)]的定义域;Ⅱ利用内层函数t=g(x)和外层函数y=f(t)确定函数f[g(x)]的单调性,法则是“同增异减”,即内外函数单调性相同时为增函数,内外层函数单调性相反时为减函数。
© 版权声明
本信息内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。
相关文章
暂无评论...